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Abstract

Wrong Way Risk can be of crucial importance when computing counterparty risk
measurements like EPE or PFE profiles. It appears when the default probability a
given counterparty is not independent of its portfolio value. There are a number of
approaches in the literature but, to the author’s knowledge, they all fail to provide
either a computationally efficient approach or an intuitive methodology, or both.
This technical note tackles this problem and describes an intuitive and fairly easy
method to account for Wrong Way Risk with minimal added computational effort.

1 Why a Wrong Way Risk Model is Needed

When computing and pricing counterparty risk, the existence of wrong way risk (WWR)
should substantially affect our risk measurements.

WWR appears when there is a dependency between the portfolio value and the default
probability of the counterparty linked to that portfolio. For example, say our portfolio
is one single equity put option which we have bought from Morgan Stanley, with Bank
of America being the option’s underlying. In counterparty risk, the potential exposure
must be measured subject to default of the counterparty. The question we have to tackle
then is how much could that option be worth in the future in the event of Morgan
Stanley defaulting. Morgan Stanley and Bank of America are both SIFIs' in the US,
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and so we can reasonably assume that Bank of America stock prices will be highly
affected by the event of Morgan Stanley defaulting. So, our exposure to this put option
can be much higher than that given by a model which does not take this dependency
into account.

The opposite effect (i.e., when the exposure is likely to decrease in the event of counter-
party default) also exists, and it is typically called Right Way Risk (RWR). From a risk
management and CVA pricing standpoint, both effects are important as, should models
not capture this dependency, counterparty risk measurements will over- (RWR) or un-
derestimate (WWR) risk. From a regulatory point of view, WWR is more important,
as regulators allow capital models to be conservative but never aggressive.

2 Existing Modeling Approaches

There are a number of models in the literature that tackle this topic [1, 3, 4]. They can
be broadly split in two families: models with a joint probability distribution function
driving exposure values and defaults [1, 4], typically using a Gaussian copula with a
correlation p, and those that model the dependency between portfolio exposure and
counterparty default events using an analytical approach linking portfolio value with
default intensity [3]. All of these models use a change of measure. Some[l] implement
that change of measure in the evolution of the risk factors, while others[3, 4] implement
it in the calculation of risk measurements (e.g., EPE? or PFE?). In the latter case, each
scenario ¢ and time point j in a typical Monte Carlo simulation has a weight w; ; assigned
to it when calculating risk measurements.

On the one hand, copula-driven models tend to be computationally intensive, as they
require the simulation of random paths from joint distributions. On the other hand,
analytical models are faster to compute, but they require an analytical expression linking
the value of the portfolio of trades with the default probability of the corresponding
counterparty.

To the author’s knowledge, the attempts so far to make that link have used methodologies
which are subjective to the portfolio manager’s views and/or not possible to corroborate
with actual data.

This technical note offers a methodology to overcome these issues and provides a frame-
work of driving WWR models using market data. The proposed method requires minimal
additional computational effort.
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3 Leveraging from Market Information

The setup is the following: we typically have a Monte Carlo engine for Counterparty
Risk that produces scenarios in a number of future time points. After netting is applied
[1, 2], we obtain a grid of portfolio valuations from which EPE, PFE, and other risk
measurements can be calculated. We want to assign a weight to each of those scenarios.
Those weights will contain the required information about the counterparty default
probability in each scenario and time step. If there is no WWR, then each weight
can be equal to one.

We can attempt to put a weight to each scenario based on the value of the portfolio,
as done in a number of public methodologies [3, 4], but portfolio compositions change
over time, so any past analysis is difficult, and extrapolation to the future can also be
an issue.

3.1 Linking Exposures to Default Probabilities

Most existing counterparty risk setups include an equity model. Also, we know that,
loosely speaking, there is an inverse relationship between equity prices and CDS spread
levels for a given company; that is, the lower the equity value of a company, the higher
the default probability and, hence, the higher the credit spread.

Default events are rare, so back-testing can be difficult if not impossible. However, we
are not interested in that default back-test information right now. What we want is
to find a weight w;; for each scenario and time point, so that the calculation of risk
measures like EPE or PFE can be done with this information so that each weight should
represent the counterparty default probability in that scenario and time step. Assuming
that, at each point in time, the CDS market data accounts for the link between the
default probabilities and equity prices, then we can use that data to get a handle on
the latter link. Provided that our existing Monte Carlo engine for Counterparty Risk
contains a model for equities (this can be easily typically incorporated if it does not
exist), and that each simulated scenario will contain a realization of the equity price of
the portfolio counterparty, then we can assign a default probability to each scenario. It
should be noted that this can be done even when the portfolio does not contain any
trade with the counterparty’s equity as an underlying: all we have to do is model the
underlying’s equity price with the appropriate dependency structure of the risk factors
driving the portfolio valuation.

In order to assess this method, the author studied the history of the company Ford, Ford
was picked because it has recently been close to default and yet didn’t do so, hence it
offers a good example with a wide range of credit spread values and equity prices. Figure
1 shows the Ford equity price versus its one year CDS spread?.

“The CDS spread tenor was chosen to be one year because it represents a good measure of the
probability of imminent default. Shorter tenors might not be liquid enough, hence data quality could be
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Figure 1: 1 year spread vs. equity price for Ford Co, from Aug 2007 to Dec 2011. Source:
Bloomberg.

Assuming that the default intensity (\) (i.e., the hazard rate) is a good representation
of the default probability, and that the proxy s = A(1 — R) is good, where s represents
the credit spread and R the recovery rate, we can obtain a series of data points linking
default intensity and equity prices. This is shown in Figure 2.
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Figure 2: Default intensity vs. equity price for Ford Co, from Aug 2007 to Dec 2011.

Once we have these plots showing the inverse default probability vs equity price, we can
try to fit a number of analytical expressions to it. The author tried several fits using
a least squared regression technique; three of them are shown in Figure 2. The one
that seemed to deliver the best results was Fq = 3.0784/\%3%9 where Eq represents the
equity price.

an issue.
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Figure 2 displays an example of the strong dependency between between equity prices
and default intensity that we were looking for. We can now easily attach a weight w; ;
to each scenario and time step in the valuation grid of a portfolio of trades with Ford

Co. as the counterparty. This way, we can easily and efficiently account for Wrong Way
Risk.

Finally, it must be noted that if we already have a credit and default model in the Monte
Carlo engine used for counterparty risk, and if that model accounts for dependency to
other asset classes, then the default intensity simulated by that credit model can be used
directly instead of having to go through equity price simulations.

4 Conclusions

This technical note sketches a simple way to account for Wrong Way Risk in coun-
terparty risk calculations. All that is needed is an equity model with the appropriate
dependency structure with the risk factors driving the portfolio value, and a calibration
of the default intensity to equity prices via the CDS market data. The risk measurement
calculations like EPE or PFE can then get computed using a weighting per scenario and
time step.

For illustration purposes, we have in this note used a simple least square regression
technique for the calibration of the default intensity to Ford Co equity price. More
sophisticated approaches can be used; for example, an inflation adjustment of equity
prices could be appropriate.
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