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Abstract

Exposure models in the context of counterparty risk have become central to fi-
nancial institutions. They are a main driver of CVA pricing, capital calculation and
risk management. It is general practice in the industry to use constant-volatility
normal or log-normal models for it. Ignacio Ruiz and Ricardo Pachón explain some
of the strong limitations of those models and show how stochastic volatility can
improve the situation substantially. This is shown with illustrative examples that
tackle day-to-day problems that practitioners face. Using a coupled Black-Karasinski
model for the volatilty and a GBM model for the spot as an example, it is shown
how stochastic volatility models can provide tangible benefits by improving netting
effects, CVA pricing accuracy, regulatory capital calculation, initial margin calcula-
tions and quality of exposure management.

Counterparty risk has now become a central focus of new developments in the financial
industry. This mainly affects three areas in financial institutions: CVA pricing, capital
calculation and risk management. The most widely used risk metrics are PFEt, as a
percentile-like measure of future portfolio value, and EPEt, as the average of the future
possible portfolio values after zero-flooring.
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A key aspect of counterparty risk measurement is the modelling of the underlying risk
factors. The most widely used models tend to have normal or log-normal behaviour1.
These models are popular, arguably, because they usually have analytical solutions and
the cost-benefit of implementation is very positive. They are a very good starting point
but they also show a number of limitations, which include:

1. Lack of netting with volatility

In a simple normal model, the volatility is a constant parameter. For that reason,
portfolios with volatility-sensitive products, like variance swaps or options, cannot
enjoy the full proper netting benefits under that modelling framework.

2. Suboptimal model reactivity

Counterparty risk models tend to be calibrated to the real measure for capital and
risk management purposes, and to the risk-neutral measure for CVA pricing. In
either case, given that normal models have a constant volatility, a key challenge
that practitioners face is what volatility to calibrate to: 1-month, 3-month, 1-year,
5-year, 10-year?

On the one hand, if a model is calibrated to short-term volatility, long-term risks
can be miss-interpreted and, also, the risk metric (e.g., EPE or PFE) of long-term
contracts can be too volatile from day to day. On the other hand, if calibrated to
long-term volatility, risk metrics for short-term contracts may not reflect the true
risks. This problem is specially acute in crisis periods.

Finding a right balance between these two poles is very important for a number
of key functions within a bank, like the calculation of initial margin, exposure
management within the set limits, capital calculations and CVA pricing. As a
result of the overly simplicity of normal models, they tend to be calibrated to
“somewhere in the middle”: typically to a volatility between three to seven years,
depending on the portfolio composition and bank policies. Hence risk metrics tend
to be hardly reactive to swinging short-term market conditions, as they ideally
should be.

Needless to say, this is suboptimal..

3. Lack of fat tails and skew

Normal models deliver no skew and no excess kurtosis. However, historical time
series indeed show those characteristics. This is particularly relevant for the risk
management of exotic trades, that can be very sensitive to the tails of the under-
lying risk factor distributions.

In this paper we are going to see how a stochastic volatility framework can solve these
problems.

1From this point, we will refer to these models as “normal” models, for the sake of simplicity.
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A Joint Spot-Volatility Stochastic Model for Counterparty
Risk and CVA

We find that, often, quantitative publications lack intuitive explanations that practi-
tioner can easiliy relate to. So, first we are going to revise how stochasticity in the
volatility affects the diffusion of the spot, in an intuitive way.

Gaining model intuition

The introduction of a stochastic volatility in a normal or log-normal process alters the
distribution of the spot during the simulation. To gain some insight, let’s say for a
moment that the spot (X) we are diffusing follows a normal process

dXt = σt dW
X
t (1)

and that the volatility follows a stochastic normal process too2, so that

dσt = η dW σ
t , (2)

where dWX
t and dW σ

t are Brownian motions. Let’s say that both Brownian motions
have a correlation structure so that

dW σ
t = ρ dWX

t +
√

1 − ρ2 dW ∗t , (3)

where dW ∗ is also a Brownian motion and where dWX
t and dW ∗ are independent.

Putting equations 1, 2 and 3 together, we find that

Xt = X̃t + η ρ
1

2

(
WX
t

2 − t
)

+ η
√

1 − ρ2
∫ t

0
W ∗u dW

x
u , (4)

where X̃t would be the value of Xt if the volatility were a constant equal to σ0.

Equation 4 illustrates how adding stochasticity to the volatility we are producing non-
normal distributions for the spot. Skew will arise from the chi-squared term WX

t
2
, and

kurtosis will arise from that chi-squared and the
∫ t
0 W

∗
u dW

x
u terms.

Let’s look at this from a numerical point of view now. As expected from equation 4, the
correlation ρ delivers an interesting effect. Figure 1, top panel, shows the skew of the
one-year moves for a spot simulation for different values of the correlation. We observe
how the skew changes as the correlation moves from negative to positive values.

2This model choice is done for simplification in the context of this section.
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Figure 1: Illustration of dependence of the spot distribution with the correlation ρ and the
vol-of-vol η.

The value of the vol-of-vol η also has a notable effect on the spot diffusion. This is
depicted in Figure 1, bottom panel. The distribution of the spot process gets leptokurtic
as η increases and tends to the normal distribution when it decreases. This is because
high values of η result in higher stochastic variation of the volatility process. As a result,
high kurtosis is induced because a high η introduces uncertainty in the volatility, which
subsequently delivers a “student-T” effect in the spot. We say this because a student-T
distribution is precisely created when there is uncertainty around the volatility [9].

We have seen, with a number of simple explanations, how “plugging” stochastic volatility
in a normal process we are introducing non-normal effects. It is very important for risk
practitioners that may consider implementing this kind of models to understand the
impact they are introducing in the spot diffusion.
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A Bank Can Benefit Substantially from Stochastic Volatil-
ity

There are several stochastic volatility models in the academic literature[7, 4, 6, 8, 5, 2].
However, they tend to gravitate around the subject of deriviative pricing and, to the
authors’ knowledge, these models have not been studied in the context of the practice
of counterparty risk and CVA pricing in financial institutions.

In order to illustrate the power they bring to this space, we wanted to choose a model
to show practical results that the practitioner can relate to. In the previous section we
chose a normal model both for the spot and the diffusion, as the purpose was to provide
intuition as to how stochastic volatility changes the spot diffusion, and that simple model
was ideal for that. However, when we come to the real world, that model is not good
enough in general3. For practical and more realistic examples, we are using the following
model: if X is the spot value to simulate, then

dXt = Xt σt dW
X
t

d(lnσt) = θ (lnµ− lnσt) dt+ η dW σ
t

dWX
t dW σ

t = ρ dt
(5)

where dWX
t and dW σ

t are Brownian motions, σt is the process volatility and θ, µ, η and
ρ are model parameters that will be discussed in the next sections. That is, we choose a
Black-Karasinski (BK) model for the volatility and a quasi Geometric Brownian Motion
model for the spot4.

The purpose of this paper is not to provide a survey of all the different stochastic
volatility models, and which is good for this or that asset class. However, we think this
model is ideal for the needed illustrative purposes because, firstly, volatility is a strongly
mean reverting risk factor (see Figure 2) and, secondly, there is some evidence in the
literature that it can back-test well [10]5.

Netting Benefit

Typically, in current financial institutions, if risk is measured with a normal or log-normal
process, the volatility risk is either missed or “added” on top without any netting benefit.
By contrast, with a spot-volatility diffusion model, the correlation between the volatility
and the spot is accounted from within the same model, and so the institution can benefit
from netting effects in an optimal way.

3For example, it gives negative volatilities, and is not mean reverting in the volatility.
4“quasi” beacause the volatility is not constant, but stochastic.
5That study was done in the context of equities.
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Figure 2: VIX time series. Over 20 years of history, it shows a clear mean reverting pattern to
a level of around 20%.

Figure 3 shows both the collateralised6 and uncollateralised EPE profiles for a simple
spot forward and variance swap. PFE profiles show the same behaviour. The risk profile
of each individual trade is shown on the left column. The netting effect is displayed in
the right column by comparing added profiles versus profiles of trades which were netted
first. The model was calibrated to S&P500.

The resulting netting benefit is substantial. The peak of the profile more than halves
when using the spot-volatility diffusion model. An equivalent behaviour is observed
for PFE profiles. This means that, without a spot-volatility diffusion model, banks
calculations for CVA, exposure management and regulatory capital are notably higher
than what they should be.

Model Reactivity

Another important limitation of a simple normal models is how little they react to
swinging market conditions. As we are going to see, this is not only important for the
three elements just mentioned above, but also for Initial Margin calculations.

Let’s say that today we are living in a stressed market environment. The market points
at a short-term 1 month volatility 60%, a medium-term 5-years volatility of 40% and a
long-term 10-year volatility of 35%. These can be either historical or market-implied.
A simple normal model will typically be calibrated to the 5-year 40% volatility point.
The spot PFE profiles, both collateralised and uncollateralised for a GBM model can be

6Building a collateral algorithm is well beyond the purpose of this paper, so we are using 10-day risk
as an indication of collateralised risk. This is equivalent to assuming an ideal CSA with daily margining,
zero threshold, zero minimum transfer amount, no independent amount, no rounding, etc. The reader
should note that this 10-day risk is a typical Basel’s Margin Period of Risk in the context of regulatory
capital calculation.
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Figure 3: EPE profiles for a forward (black) and a variance swap (red), with both profiles“added”
(blue) and with trades properly netted per scenario (green). This is shown both for the collater-
alised (top panels) and the uncollateralised (bottom panels) cases. The reader can see how the
netting benefit is very important.

found in Figure 4, left panels. However, if we use a stochastic volatility model, the risk
profiles are more granular in terms of volatility profile and, as such, the current high
volatility can be taken into account (right panels, green lines).

Let’s say that some time has passed, the source of market stress has disappeared and now
we have a short-term volatility of 40%, with the same medium and long term volatilities
as before. A simple normal model will not see any change in the risk profiles, but a
stochastic volatility model will adapt, lowering strongly short term risk for collateralised
trades (from 18 to 12 in Figure 4) and lowering long-term risks for uncollateralised profies
(from 160 to around 150 in Figure 4)7.

Then, let’s say that the market went to a very quiet phase so that short term volatility
was only 30%, with the same medium and long term volatility. In this case, the risk
profiles will continue to decrease short-term risk under a stochastic volatility framework

7This happens because uncollateralised profiles are driven by the rolling 10-day risk, which will be
driven by the starting volatility at the beginning of the simulation and by the mean reversion level far
in time. However, in the uncollateralised world, risk is driven by the cumulated volatility up to the
simulation time.
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Figure 4: 95% PFE of spot, using constant volatility in a simple GBM model (left panels)
and stochastic volatility in a BK spot-volatility diffusion model (right panels), displaying both
the collateralised (top panels) and the uncollateralised (bottom panels) cases. The stochastic
volatility simulations each use a different volatility at the start of the simulation, all other
parameters being equal.

(blue lines), but will not change at all in a standard normal model.

This “reactivity” is a good feature in a model. Normal models do not have it. Stochastic
volatility models do. The areas in a financial institution that are positively impacted
include:

1. CVA pricing

CVA is, to first order, approximately proportional to the area under the EPE
profile. It can be clearly inferred from Figure 4 that that area is going to be
different for different market conditions when we use a stochastic volatility model,
specially for uncollateralised portfolios, reflecting market swings.

This time let’s use a interest rate swap as an example. Figure 5 shows the EPE
profiles for an uncollateralised vanilla swap, modelled with a constant volatility
model and a stochastic volatility model, calibrated this time to USD market implied
volatilities, and to three potential market conditions: stress, normal and quiet8.

8For the sake of illustration, the interest rate model was simplified to a simple 1-factor GBM process.
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The bottom left panel shows the CVA for this trade under each model9. The
difference in the CVA price delivered by each model can be clearly appreciated:
the stochastic volatility model is more precise to measure CVA as it contains
information about the “current” state of the market; as a result, the CVA price
adapts quickly to stress or quiet conditions.
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Figure 5: EPE uncollateralised profiles for an IR swap, modelled with a constant volatility
model (top left), and a stochastic volatility model (top right). In the case of stochastic volatility,
the model was calibrated to typical stress, normal and quiet market conditions. The bottom left
panel shows the CVA for each of the four cases, and the bottom right shows Regulatory Capital
(EEPE).

2. Regulatory Capital

Regulatory capital calculations are based in the EEPE10 of each netting set which
is, basically, the average of the non-decreasing EPE profile during the first year.
A system calculating EEPE under a stochastic volatility model should in general
better reflect the true 1-year default economic risk than under a constant volatility

There are other models more appropriate for interest rates, that include mean reversion for example, but
the authors do not want to divert the attention from the main topic of this paper (stochastic volatility), so
this model was chosen for illustrative purposes. These results can be extrapolated to more sophisticated
interest rates models.

9CVA was calculated considering both the asset and liability side of it (asset side also known as
one-way CVA, and liability side as DVA) with a flat spread of 500 bps for the counterparty and 50 bps
for the bank.

10The regulatory Effective Expected Positive Exposure[1].
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model given its better market reactivity. Figure 5 shows how the EEPE differs
between both models; the reader can see how those changes can be substantial.

3. Initial Margin Calculation

Typically, initial margin calculations for collateralised trades are based in the max-
imum of the PFE profile at, for example, 99% confidence level. We can use the
same swap of the previous example to illustrate the strong impact the volatility
modelling has in this matter. Figure 6 shows the PFE profiles at 99% confidence for
a constant volatility and a stochastic volatility model with the three calibrations
mentioned before, as well as the initial margin (IM) as given by each of the mod-
els. As expected, the IM of the swap incepted in stressed market conditions and
modelled under stochastic volatility is noticeable higher than that given by con-
stant volatility. Interestingly, when the market conditions are quiet, the stochastic
volatility model considers the possibility that the volatility may increase in the
future and, hence, the IM is not noticeably lower compared to a constant volatility
framework.

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

PFE 99% − constant volatility

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

PFE 99% − stochastic volatility

 

 

1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

Initial Margin

c
o
n
s
ta

n
t 
v
o

la
ti
lit

y

s
to

c
h

 v
o
l 
−

 s
tr

e
s
s

s
to

c
h

 v
o
l 
−

 s
td

rd

s
to

c
h

 v
o
l 
−

 q
u
ie

t

Stress

Standard

Quiet

Figure 6: PFE collateralised profiles at 99% confidence for an IR swap, modelled with a constant
volatility model (top left), and a stochastic volatility model (top right). In the case of stochastic
volatility, the model was calibrated to typical stress, normal and quiet market conditions. The
bottom left panel shows the Initial Margin calculated from each of the four cases.

This example illustrates quite clearly how the calculation of IM is more accurate
with a stochastic volatility model than with constant volatility. This IM calcu-
lations are becoming increasingly important given the current trend to move to
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collateralised agreements and to use central clearing houses.

Better Model for Tail Dynamics

As previously mentioned, market data analysis indicates that spot time series tend to
show skew and positive excess kurtosis. This is not captured at all by a simple normal
processes. This is particularly important for exposure management as, here, we tend to
be very sensitive the the tails of the spot distribution. Also, a model that captures well
the tails should, in general, back-test better.

As said, it is well known in the academic literature that stochastic volatility models
create skew and kurtosis in the spot distribution. The aim of this paper is not to do a
full detailed check of this feature, but some comparison with real market data is healthy
at this stage, at least to cross-check that the outcome of the mathematics make sense
with reality11.

In order to do this we calibrated our stochastic volatility model to 10 years of VIX
time series, we run then a simulation of the spot and, then, we compared the 10-day
standard deviation, skew and kurtosis delivered by the model to that observed in the
market. Also, we compared to the results obtained from a GBM process, quite a market
standard in the industry for equity modelling in counterparty risk. The following table
shows the results:

10-day moves S&P500 Stochastic Volatility GBM

Standard Deviation 0.039 0.042 0.04
Skew -0.89 -0.60 0
Kurtosis 9.1 5.5 3

The reader can see how a stochastic volatility model matches much better real behaviour
than a GBM model. This test has been done only for one time series (S&P500), so
it should not be extrapolated naively and say that a stochastic volatility model will
always be better in this context than a GBM, but it is a healthy and encouraging cross-
check.

In any case, it appears that stochastic volatility models may be better than normal
processes specially for, for example, exotic trades, where risk can be highly sensitive to
the tails of the spot distribution.

Calibration and Some Practicalities

Typically, counterparty risk models used for the purpose of exposure management and
regulatory capital are historically calibrated, and when for the purpose of CVA pricing

11For example, it would be absurd to find that the calibrating parameters deliver a skew with opposite
sign of that observed, or a kurtosis 10 time higher that that seen in reality.
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are market-implied calibrated. These stochastic volatility models can be calibrated to
both schemes.

If for CVA, we can calibrate, for example, “today’s” volatility to the 1-month at-the-
money option implied volatility, and θ and µ can be calibrated as a best fit of the
expected future volatility to the term structure of the implied volatilities. The vol-of-
vol term η will typically need some sort of historical analysis (unless there is a liquid
options-of-options market); for example, we can calibrate η to the standard deviation of
changes in the short-term point of the volatility surface.

If historical calibration is needed, then we can calibrate “today’s” volatility to the last
1-month standard deviation of daily spot moves and then other parameter like θ and
µ using the expected future value of the volatility with a fit it to a number of points
of the long-run historical volatility (e.g., 1, 5, 10 years). The vol-of-vol is, arguably,
more tricky the calibrate; we can use, for example, a long time series of 1-month rolling
volatility for it, and calibrate it to the standard deviation of changes, considering the
relevant correcting factor if the data contains overlapping information[3].

An interesting mixed version of both schemes can also be used. We can pick the most
representative point of a options volatility surface (e.g., 1-year at-the-money), calculate
a long time series of it, and calibrate all volatility parameters to it using the standard
least-squares or maximum likelihood methods; that is, we are using a history of market-
implied data. In fact, in reality, this type of mixed historical-implied methodologies will
need to be used often as a result of lack of available data.

There is no given calibration methodology that is, by definition, better than the other
ones. Which methodology to use will depend in the final use of the model, internal
policies and, most importantly, in data availability.

In addition to calibration, a practitioner designing a stochastic volatility model for coun-
terparty risk should consider a number of practicalities, like the sensitivities that the
portfolio under consideration has an how to apply these models to different asset classes.
The examples of this paper have been focused in 1-factor models. We have calibrated our
illustrative model to Equities (S&P500) and to interest rates (USD). These stochastic
volatility models can be applied to any asset class, as all of them suffer in some way
or another from the limitations highlighted here when modelled with constant volatility
applied to a Brownian motion. However, multi-factor stochastic volatility models can
become quite convoluted in practice. As such, the researcher will have to weight out
the benefits and costs of stochastic volatility. In order to do this, the researcher has to
understand what are the main risk factors that the portfolios under consideration are
sensitive to (e.g., is my portfolio sensitive to rotations in the yield curve?) and find,
on this way, the optimum balance between risk measurement quality, model complexity
and implementation practicalities.
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Summary, Conclusions and Critique

As shown in this paper, migration from constant volatility to more advanced volatility-
spot stochastic models can deliver important benefits for counterparty risk management,
capital calculation, and CVA pricing.

In contrast to typical normal or log-normal models, where the volatility is constant, we
showed how spot-volatility diffusion models provide strong netting benefits between spot
and volatility risk-driven trades. Then we showed how these models can differentiate
between short-term and long-term risk, providing better CVA, capital and initial margin
measurements. Finally, we showed how these models introduce skew and kurtosis, a
desirable feature.

Together with the main strengths outlined, these frameworks have a number of potential
weaknesses which must be kept in mind. As seen, the kurtosis it delivers seems to be
still too low12, so this model may not be appropriate yet to measure extreme tail risk.
Also, for a given time horizon and depending in the model, the probability distribution
of the spot under a spot-volatility diffusion process can depend on the number of time
steps taken by the simulation. However, we found that that dependence was small in the
illustrative model we used. Finally, more sophisticated correlation structures between
the volatility and the spot could be investigated, as we only implemented a locally
gaussian copula dependency structure.
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